FINAL REPORT

PETRI NET ANALYSER — GROUP 4

15 March 2004

TOM BARNWELL, MICHAEL CAMACHO, MATTHEW COOK,
MAXIM GREADY, PETER KYME, MICHAIL TSOUCHLARIS

ACKNOWLEDGEMENTS

Many thanks to Dr William Knottenbelt for his patierened support as supervisor for this project, and td Nic
Dingle for his invaluable help.

TABLE OF CONTENTS

1. INTRODUGCTIONoiiiiiiiiiiirie it etee s mmmr et sre et st e e an e e sae e e se e e s s eameeer e e seneessneeasbeesaneesnneennneesaneens 1
O O 1 T 0 1= U P PRSPPI 1
L2, PIPE et —————— Rt Rt ne R et e e R e n e e e 1.

2. SPECIFICATION ...ttt ittt ettt ettt e ettt ettt h ekttt e e abe e e s he e e bmeamee b e e eabeeaabeeenbeeabe e e nbeeanbeeannne s 2
2.1. Code review, cleanup and dOCUMENTALIONcccueieiiiieiiiiie e erree e seaee s 2
2.2, GSPN fUNCHONANLY ..vviiiiiiieeiiiiee ittt e s e e s sbensmne s nbbe e e s snbe e e e ssbeeeeanseeeeennnes
2.3. DNAmaca interfacing
b o 111 T [(o To £ PSPPSR
P22 T €1 | USSR PR OURPRY 4.

3. METHODOLOGY ...ttt itie ettt eteeetee s et 2t e e s2 e e steeeseeesmeeenseeanseesmmnnaeessseessaeeasseesnseesneeenneessnseess
R J0t 1 £ U od (1 =TT P PP PPPUPPPPPOPPPPPRE
I ©fe o 1o I =T 0 1Y/ T (o] 010 1] o | SO O T PP PP PP
330 OVETAII GUI .ttt e e e st b et n e nn e b

3.3.1. Look and feel.......ccccocvriniririnnnnn.
3.3.2. GUIACLONSveerecrricieccee e
3.3.3. Toggleable toolbar buttons
3.3.4. Other GUI fEALUMES.......eiiiiiiiieieiee ettt eeme s et n e
0 S Vo To (1] 1= €1 | PSPPSR
T ST B To Tod ¥ [0 =1 o1 7= L1 [0) o PO PSSO
3.6. Enhancements to saving and l0adiNgccewmmeeesiiieeeniinees e s sieeessssenssmnssssseeesssneeessnnees 9
3.7. Addition of Generalised Stochastic Petri Net analySiS...........cccceeviiieeiiiieeeiiveecmeenieeeesieeens 9
T A I o (=T o T= V= 1110 [TP P P PPRPPPRN 10
T A 1141 o1 1= 4 o T=T o) =1 o] o SRS PRRSURPRN 10
3.7.3. Problems €NCOUNTEIEA.coiiuuie et sttt ettt e sttt e e sttt e e ssse e e s smneneseeesnbbeeessnbeeeeanes 13
RS T B\ VY g o F= (o= W 01 (=T = (o T R PRSP P PP 13
3.9. Object selectioncccceevviieeiniiiennnns
3.9.1. Selection mode
3.9.2. Dragging out a selection: the selection rectangle..........cccocvveeviiiie i 16
3.9.3. Clicking on objects and using the Shift KeY ...ccccce.eviiiiiiiiiiiiiic e 17
3.9.4. Movement and deletion Of SEIECHONScucveceriiiie e 17
N O T =T o = 1 o SO RROTSR
3.11. Arc-transition €NLIY POINTScoiueieiiiiesceeeeiee e ssiee et e e st e s e e e et s ssmme e saeesssbaeessntaeesssaeeenns
0 I S o =Y o o 1T PSPPSR
G0 I 2 |V =1 1 g To Yo (o1 (o T |V SRS
3.12. Arc path manipulation points
3.13.Arc SNapping.....ccccceeeevveeerniveeennnnee
3.14. ANNOLAtiONS.......eeeeriiiieeniiiee e
.15, MOUUIE MENAGETeiiiitiieetiee ettt s ekt e e stk e e e sabe e e e sabe e e e sasseeeamnssabee e e enbbeeeebbeeesnnbeeenanes
I ST €14 To OO PTSPU PP OP R PTRP PR 42
RO A = doTo g =T oo I o110 11T O PSP RP PR 24
N S =T 00T o] [1= T SRR R OTPRP 25
N B AN o 10 aF= U110 Iy T Yo [T PSP 26
4. ADDITIONAL BUGS FIXED IN PIPEoiiiiiiiiiiieesee ettt s eeeme e 27

LT OX @ N[I 15 1@)
5.1. ProducCt @VAIUALIONuuiiiieeeeiiieeeeeciie e e e s s st ee e e e e e e st e e e e e s sammneessssaseeeeaeesaannsneeeeeeeeannnnnns
L T2 U [1 g T=T VLYo 1

5.2.1. HiIerarChiCal NELS..........uuiiiiii it eeee et e e e e e e et eeenns e e e e e e e s e aanbbeeeeeeeeannes
I] o)=L o I o T- 1] £ TSP
L0720 TR U 1 0 To [0 JX= U To 1 (=T [TS SRR
5.2.4. Contextual iCON DAr CONIIOISccviiiiiiiiieeiee e
LI ST Ao [g T o To][] €3 (o J= T o1 SRR
I S T O] 01 () (LU F= | o 01 =Y 0] £
5.2.7. Passing through extra XML fields
5.2.8. MaC OS X Properties fil€eeeiurieiii e ettt ettt srenenre e s bbe e e sieeee e
5.2.9. RESPONSE tIME ANAIYSISveiiiiiiiieiires s mmemmmm et eeesstaeeeestteeaesstaeeesssbeeessnnensseeesssseeesssseeesns
5.2.10. SEIECHON GIOWeiiiiiiiiiiiiiie e sttt ettt et esme et e e s snbe e e e s beee e s nenee s
5.2.11. Handling of 0CClUSION Of [@DEIScooitamm e

(ST AN ad o =1 N1 5][O =3 T
LN = L= =1 =T o =PRSS
(I €1 (o 10 o AT PP PP
6.3, MEELING MINULES....ciiiiiiiiiiiee ittt eeee ettt et ettt e smn e et b e e s sabb e e e sabbeeesbbeeesnnbaeeean

6.3.1. MINULES I5/1/04 ... et e mr e s e
6.3.2. MINULES 1O/1/04 ... mnmr e s e
6.3.3. MINULES BO/L/0Aot e r e s e
6.3.4. MINULES 13/2/04 ... e
6.3.5. MINULES 16/2/04........cco oo e e e s s eaeas
6.3.6. MINULES 20/2/04 ... e mnme e e s e
B.3.7. MINULES 23/2/04.......coeeeeee e et e e e et et et e e e e e e e e e ae b b mmmn—t b e seseseas bbb aeseenes
6.3.8. MINULES 2712104 ettt e e e et et e e e e e e e e e e et b mmm——t b e seseseeebbranseeeenes
6.3.9. MINULES L/3/04..... oot e e s e e e e et ee b e s e e e e e eeeaasa s semanasssesasesessbaanseeeseresnes
6.3.10. MINULES B/3/04 ...t eeeeeet e
B.3.11. MINULES 8/3/04.......co oot eeee et
B.3.12. MINULES 12/3/04 ... et nnne e e e e e e e e e e e e e e e e eaeeeaeens

1. INTRODUCTION

The aim of this project is to enhance an existingeicsoftware written for a 2002/3 MSc Conversionugro
project, called PIPE. PIPE (Platform Independertti Rt Editor) is a Java based editing and analysiesyst
for Petri nets. It is to be enhanced through impraaed additional functionality and by providing artensible
platform for further development.

1.1. Petrinets

Petri nets are a formalism for modelling concurrentesys, first defined by Carl Adam Petri in 1962. They
allow correctness of concurrent systems to be verif@dg well-defined, provable mathematical techniques
and allow the behaviour of a system to be expressdu draphically and algebraically. They support the
natural expression of such concepts as synchronisatioooamehunication between processes. The ability they
provide to visualise the structure of a system promgteater intuitive understanding of what is being
modelled. Petri nets have since been extended amdeguigd with additional behaviours, most notably whith t
addition of time data to produce Generalised Stetah&etri Nets (GSPNSs).

The building blocks of a Petri net are places, itenms, arcs and tokens. Places model conditions actdj
Places may contain tokens, which represent the vdltleeacondition or object. Transitions model actesj
which change the value of conditions or objects. &@mple, firing a transition may destroy a tokenrad o
place and create a token at another place. Theameectedness of places and transitions is represesited u
arcs. Each arc has one and only one source, and dramnone target. If the source is a place, thgetamust
be a transition, and vice versa.

1.2. PIPE

The original PIPE was conceived as a program to damalyse and simulate Petri nets. The intention was t
incorporate the many of the features of existing iPe¢t tools in one package and improve on their
shortcomings. A module interface was provided so thétreal modules could be adapted to be loaded
dynamically into PIPE at run time.

The tool was also designed to be fully PNML complismtas to be compatible with existing tools. The tool
was written entirely in Java so as to be fully platfondependent.

The program consisted of an editing/animation paogiging basic functions to draw simple Place Traosit
nets and animate transition actions; and a tree wiem fvhich load analysis modules. Modules were provided
for invariant, simulation, classification, and statacganalysis.

The animation and editing functions were implemerttedugh the use of a Model-View-Control (MVC)
pattern where the Petri net data is stored in aafdger” class and the view is notified to updatelfitaden
changes are made to the data.

There were, however, some notable problems with PTREse included:

e The editor pane allowed the drawing of nets but jolex¥ no functionality to export the resulting diagis
in a graphical format.

e The editing interface was time consuming, uninteitirestrictive and inelegant.
e The Invariant Analysis module (adapted from an exjstdol called Predator) produced incorrect results.

¢« Much of the existing code had been produced witiiegphical IDE and as such was difficult to read and
suffered problems with portability.

« Existing code both lacked clear comments and contdargd sections of commented-out code.
« Existing code was both inefficiently implemented aodtained many redundant and unused functions.
e The software contained numerous bugs.

2. SPECIFICATION

There were five target areas for development:

e Existing code review and documentation, includingrojsation of existing features and fixing of any bugs
found.

« Extension of the program to support GSPNs, includé@myesentational and editing tools and modules for
relevant analyses

* Interfacing with DNAmaca for net analysis
e Improved editing tools — improved interface and funrality for creating nets
e GUI - improved interface and functionality for worg with nets

These areas were investigated in the early stages qirdfect in order to determine their feasibility atad
produce estimates for the amount of work requirediné& of the issues involved are discussed below.
Throughout the project, many additional features wdisgussed and implemented which were not in the
original specification reproduced below; these asewised later in the report.

2.1. Code review, cleanup and documentation

Having decided to work to extend the existing wookel by the 2002/3 MSc group on PIPE, there wererakve
issues to be resolved.

First, it was necessary to become familiar with theicstire and workings of their code. Preliminary

investigations found that in many areas the existiadecwas not suitable for extension; in many cases,
encapsulation was very poor, with high coupling bowd cohesion. The vast majority was not documented. It
was therefore decided that, as far as possible withetforming a complete rewrite, the code should be
reorganised, simplified and made to better follow objeriented program design principles. During this

process it should be possible to supply documentatitimei form of inline comments to describe what theecod

is doing, to better promote group work and possiitierlextension.

During the preliminary testing it became clear thi@re were some serious bugs in parts of the code; fo
example, the Petri net classification tool was ablelassify a net such that it was a member of a subtype b
not a supertype:

Extended Simple Net n
Extended Free Choice Net
Free Choice Net n
Marked Graph n

State Machine n

Figure 1 — EFC nets are, by definition, subtypes S nets

It was therefore specified that the output of exgstinodules should be tested for correctness and aogser
fixed.

The general overview of the code was that despitérgjarith good intentions and full of good OO design
principles, it had degenerated along the way to mmecdittered with unused functions and unnecessary
dependencies between modules, with object referendeg passed from class to class. The task of cleanup

was therefore a substantial part of the projecthiopiefully one that can enable it to be furtheeeged in the
future.

2.2. GSPN functionality

Generalised Stochastic Petri nets are an extensiordofary Petri nets with the addition of timing, hetter
model real-life systems. They are very widely used am@s$ considered a basic specification that PIPE should
be extended to support these through the suppoiimeidtand untimed (immediate) transitions. This was
expected to include extending the DatalLayer clash wadtditional structures to store the information, and
adding appropriate graphical representations to thi. GThis can then provide the basis for a module
providing GSPN analysis such as determining the edality set and transition throughput.

2.3. DNAmaca interfacing

DNAmaca is a Markov chain specification, generatind solution tool, which can be used to perform asialy

of GSPNs. It is capable of performing passage tinadyais on both semi-Markovian and Markovian models,
although our module focuses on the Markovian solvke results produced by this module are passage time
analysis statistics for the current active net, wheglresent the distribution of how long it takes fayatem to

go from one state to another. The user enters panatreteheir chosen source and target states (suaHisis

of values representing the number of tokens contamegecified places), and the DNAmaca analysis retarn
dataset representing the distribution of times takerthie system to get from the source state to thettatgte.
PIPE should be able to interface with DNAmaca fao iperform analysis upon the Petri net; it shouldpthe
interface in informative GUI code and should displas returned results to the user.

2.4. Editing tools

No matter how well the analysis is implemented, withautinterface allowing nets to be easily drawn and
edited, there will be a barrier to the program’s. ug@ough initial testing of the existing version RIPE, it
became clear that there was a lot to be done iratb&. There were some barriers to easy net credtioasi
therefore specified that creation of nets should beenaadeasy as possible with minimal restrictions on what
the user could do. Proposed inclusions were:

« The ability to select and move objects, singly angroups

e The ability to align objects linearly

» Enhanced contextual menus

e Contextual controls, for example for token manigaotat

« Keyboard and mouse shortcuts for creation and edifiRgti net objects

One of the primary aims was to allow the creatiometf in a style similar to that shown in related Isoakd
journal articles, to remove the need for authordriaw the same net twice, first in an analyser and then
drawing program. This implies the following additiofehtures:

e Segmented arcs — arcs with corners

- Editable curved arcs as an extension to segmented arcs
e The ability to align objects linearly

e Arbitrary labels

2.5. GUI

The following features were specified as targetsrfoluision in the project:

The ability to save nets to graphical file formatstsas Postscript and PNG for incorporation into
documents, lecture slides etc.

The ability to print nets
Animation for transitions firing, specifying the fig delay and number of transitions to animate over

Alternative selectable component styles, includingpwhead placement and style and place/transition
fill/colouring

Inline help
Functionality to illustrate different analysis moesil

It appears that almost all of the existing GUI cags created using a graphical editor. Unfortunatilig
resulted in code that is neither efficient nor redeladnd due to the extent to which options were ghdrirom
their default values, the cross-platform performanicéhe program was severely degraded. It was therefore
specified that cross-platform performance should beedéad through reimplementation of the code using
standard Swing components, and also to provide sistent interface throughout the program and its rfesdu

3. METHODOLOGY

3.1. Structure

Since the project is based on existing code, thdessswork to be done on structural design and codsiaiivi
The basic structure of the existing code is:

« DatalLayer

e Code dealing with handling of Petri net data, idahg
loading and saving and all calculations

« Classes representing Petri net objects
« GUI

e GuiView: container for graphical display of nets, tiamg
editing events through additional classes

e All other GUI related items and functionality
e Modules

e Self-contained modules for analysis of net, using Datar
functionality

It was unfeasible to reorganise the structure, so thismaintained; there is reasonable code separating alo
MVC lines, although the editing interface code isintingled with other GUI code within thgui code
branch. The level of coupling between classes wascerl wherever possible.

3.2. Coding environment

It was initially decided that a consistent codingimmment across the group would be best to enaldierea
transfer of code and project specifications. PIPE wadginally written using Borland’s JBuilder, whidk
proprietary commercial software unavailable to theugr Of the available free IDEs, the open-sourdgi&e
project was chosen because:

e ltisfree

e ltis well supported under Windows, Linux and Mac OS

e It has a highly mature Java environment

e It has native support for CVS

« It was easily able to import the existing code ied compile it

Concurrent Version System (CVS) support was espedialportant because PIPE is already published on
SourceForgg a popular Open Source community website, with &SQ¥pository and some useful issue
tracking facilities. CVS enables several people tokvaor the code at the same time, and then to “comimtf t
changes to the repository, which determines if thexeay potential conflicts. Eclipse extends this bgveithg
line-by-line resolution of conflicting source changesd easy access to all CVS features such as previous
revision comparisons and committal annotations. Aftenesinitial difficulties gaining contact with theisting
project administrator and issues with SourceForge’s 6¥3$em, this proved to be a valuable resource, also
allowing group members to work on the code fronirtheme computers as well as University machines.

3.3. Overall GUI

3.3.1. Look and feel

Java 2 includes a large library of advanced GUI-eélaibjects under the Swing code tree. They all featu
large quantities of options for controlling their @ppance and behaviour to enable control of thggeagance
across platforms, yet Java virtual machines (JVMs) aiiedalyp optimised for them in their default state, aHi
typically causes them to be rendered in the most O8entaishion. By removing most of the code specifying

http:/iwww.eclipse.org
2 http:/lwww.sourceforge.net

appearance options, it was possible to enable Swingj\genalatform “Look and Feel” GUI rendering where
supported, giving the program the appearance of taeen@rogram, while defaulting to the Java Metal
appearance where this is not supported in the JVM.dlfishad the effect of increasing the speed of ajspt

the program as more GUI elements can fall back on end@8 display routines. The screenshots of PIPE
throughout this report are taken from many diffexgperating systems.

3.3.2. GUI actions

A custom abstract subclass of Swing’s AbstractAction classdefined which provides constructors which set
the required bound properties within the objectfecify an icon, caption, description and keyboardtshbto
actions which can then be inserted into menus ardamowith this information used to display the itemisTh
GuiAction class was then subclassed for the various typeston in order to provide implementation of
actions’ invocation. This provided a simple programgninterface for creating a consistent and highly
functional interface, replacing many virtually idieal yet unrelated classes with a class hierarchy.

3.3.3. Toggleable toolbar buttons

The ability to have toggleable toolbar buttons, ¢éating particular application states, was implemerged
including an optional additional state Boolean obje¢he GuiAction class’s bound variables, with ajpiate
accessor functions. The existence of this boolean veasused to determine if a button was toggleable; iit so,
was added to the toolbar as a JToggleButton descenddns descendant also implements the
PropertyChangeListener interface, which allows itttgger an update of the button’'s state when the
corresponding GuiAction’s state changes, by registeraedf as a listener to the action.

v PIPE: Platf
File iew QEEITE Animate Help
O S Opees P % % I
|| Analysis t I Immediste transtion | T]
v] Availe [] Tited trarsition T
=
: o ¥ Ao 2
& 0 T Arnotation M
® 0N W sddtoken NurPad +
s0
P g Delete token MumPac -
*C
* G
Find

Figure 2 - Listeners allow menu selection to update the too#ls buttons' states

3.3.4. Other GUI features

Many other GUI element were tweaked or modified|uding:

e The status bar was relocated from the toolbar to e msual location at the bottom of the window. This
required supplying a parent panel for it to renderectly.

« All status bar text is now stored as constants irStia¢usBar class source file to increase consisteraty an
reduce coupling.

* Borders and insets are applied with closer attentiotihneéorendering of subcomponents and with testing
across platforms. For example, Windows XP displayed IBeare components with a large inset which is
now explicitly removed. Some components were disglayi¢h both the component and container borders.
This resulted in an unprofessional appearance and Vedisey simple to remedy.

* The GuiView object, displaying the net and allowihtp be edited, is now displayed inside a JScrokPan
object. With the addition of code to calculate Hoeinds of the contained net objects, enables thédamea
of nets of any size and display of large nets on sscadlens.

3.4. Module GUI

It was determined that the modules’ GUI code wasidatad within each module class, with many diffeemnc
between them in terms of how results were displayed hevd options were presented. It was decided to
reimplement the common functionality within the Gklburce tree, enabling a consistent interface across
modules. The interface features chosen for thesegetii were:

e An encapsulated file browser with a simplified codtiface and consolidated common behaviour. This
FileBrowser object subclasses the Swing JFileChoosectobind provides simplified creation and accessor

functions.
& 13 5
HE. [C7) Example nets B ? 3 =
7 :; £ Courier Protacol xml
- . _l‘g Dining philosophers. <ml
My Recent £y GEPNZ xml

BocCbents & Light Switch xenl

s £ Producer & Consumer .zl
- 4 Re e

Desktop £ Simple GSPM il

My Documerts

P
=

My Computer

Fal
af

S
fTH

LE=

TfEE.

| ' 8

\

iy Metwork

Bmces | TIEEE peinat CRETD

Figure 3 — the FileBrowser classNote that Java provides automatic localisatiorhis dlialog.

e The net chooser/browser panel (PetriNetChooserPatielying the user to specify whether analysis is to
be performed on the current net or any net loadmu flisk. This was built using Swing components and
the FileBrowser object and gives a single functeouirement for the code to obtain the required net.

Source net

Use current net | |

Figure 4 — the PetriNetChooserPanel class

« A panel for displaying arbitrary buttons to perfdiumctions within the module. This ButtonBar objectswa
implemented as a JPanel descendant with a constraltbering the button captions and corresponding
ActionListener objects to be specified, and autoradlficcreates JButton objects and places them within
itself.

' Indle ‘ r Back 3

Figure 5 — the ButtonBar providing navigation buttons for the documentation browser

The results display panel. This was implemented in suelay that the module would pass an HTML
formatted string to the panel, which would then Riggdt in a scrollable pane, giving relevant options.
ResultsHTMLPane was implemented as a subclass of Swiigeel containing a JScrollPane and a
JEditorPane set for display of HTML, with an approgeribyperlink listener method, with a method for
setting the displayed HTML. It also includes a ButtanBiving buttons for the user to copy the displayed
text to the system clipboard or save it to disk, usikigeBrowser. It additionally provides functionality
parse an array of any data type into an HTML forethtable structure, simplifying display of tabulated
data.

Resutts
N
Petri net classification results
State Machine false
Marked Graph false
Free Choice Net false
Extended Free Choice Net false
Simple Net true T

ra N K A
Copy Save

Figure 6 — a ResultsHTMLPane displaying module redts including a generated table

A graph display panel for plotting suitable dataeThraphPanel object extends JPanel with a constructor
allowing data to be passed as ArrayList objects antthade to automatically draw a scaled graph on the
screen. This can be contained within a GraphPanel®hkigh provides a ButtonBar and FileBrowser to
allow the user to save the graph to a PNG file.

‘Results graph

15872

4.9

Figure 7 — the GraphPanelPane class

For all other module-specific GUI components, standasihg components were used in keeping with the
intended interface style. Module windows are now atailib-windows of the editor rather than independent
top-level windows, and are designed not to take ugrapace than is necessary.

B Petri-Net Comparison Module Sl=Tk|
Source PetriNet Comparison Petri-Net
[V use current net ‘Comparison-Net URI: Browse
[/ simulation x
Settngs s [120 s 7
Place Atributes Transiton Attributes Arc atributes s

il L e Petri net simulation results
Place AVerage numberof 95% confidence

 Name % Name 4 Target tokens interval (+/-)

 Piaces ¥ Transitions s Po 338614 0.46677

P1 1.61386 046677

4 it Mariaup ¥ Postion &) ¥ start gy
P2 129703 022048
P3 1.9703 0.08468

¥ Posttion () ¥ End 9 o4 anoer nnases -]

ony_|_se
simite
Compare

Figure 8 — a comparison of the old and new interfas

3.5. Documentation

The JavaDoc standard is widespread and well suppdirtitbws the creation of HTML based documentation
of the code in a standard format, using a utilitgluded in Sun’s Java SDK. It is also supported byp&eli
which gives assistance in completing the JavaDocdagsctly.

It was also decided to provide user documentatiapgjiinstructions in how to use the program. This task wa
chosen due to its suitability for those group memiess able to produce code, since due to its natuee, th
project has a greater emphasis on coding and lesss@ndmnd analysis. This is also to be produced in HTML
format, because it is highly platform independent alsd possible to display inside the program due ta'dav
native HTML renderer.

In order to display the documentation, another ssisct#f GuiAction was created which, when performed,
creates and displays (or activates, if already creaem@w window containing a scrolling pane displaying
HTML formatted help files. These files make use ofratex and many linked pages to display documentation,
so the window provides buttons to enable the useat@ate through the history of visited pages aneasily
return to the index.

3.6. Enhancements to saving and loading

Several additional data properties and graphicahehs have been introduced in the process of augrgentin
PIPE’s capabilities. One of the requirements for thedeetuseful was that the properties could be preserved
and retrieved in the PNML files produced by PIPE.

The extra data-capture facilities introduced wertolsws:
1. Petri Net properties
* ldentification of timed and immediate transitions
» Transition firing rate/weight
2. Graphical display properties
« Transition orientation
* Annotations
e Arc path details (corners, curves)
Introducing these properties into PIPE-produced fidegiired work in the following areas:
« Review of existing code.
e Research into XML and XSL operations and syntax.
* Review of PNML standards to ensure modifications waaldconflict with these.
« Co-ordination with graphical elements of the projectnsure the correct data was captured.
* Modification of existing PIPE XML transformation cade
< Moadification and cleanup of existing XSL transformat&heets.
« Testing of implementation to ensure all data coulddeed and restored correctly.
Design decisions taken in the course of implementiagettthanges were as follows:

» Store annotations in PNML format using the elemegt<imbels> at the same level as places, transitions
and arc, in accordance with PNML standards. Impleragnbtations as new a class in PIPE, stored in an
ArrayList within the main DatalLayer class.

e Store transition orientation, timing and firing rateight in PNML as child elements of the transition
element.

e Store ArcPath points in PNML as tool-specific cléléments of each Arc element.

3.7. Addition of Generalised Stochastic Petri Net analyis

Generalised stochastic Petri nets (GSPNs) are an ®xefdhe basic place-transition Petri nets reprieskim

the original PIPE application that allow modelliog the effects of time on the behaviour of a system by
introducing an additional type of transition. Tilroduction of time as a factor allows a system’s paréorce

to be analysed as well as its qualitative propertiesnélly, a GSPN is defined as follows:

A GSPN is a 4-tupleRN, Ty, T, W) where:

e PN=(P,T,I,I1% M) is the underlying place transition net
« T, 0Tis the set of timed transition, # [
e T,0OT denotes the set of immediate transitidns, T,=0,T=T, 0T,

e is a (possibly marking dependent) rate of a negatiymreential distribution specifying the firing
delay, when transitiofy is a timed transition.

» is a (possibly marking dependent) firing weight, whramgitiont; is an immediate transition.

Performance measures that can be produced from G8ENdeé mean cycle times for tangible states, sojourn
times in tangible states and transition throughpue Stinucture of GSPNSs is such that they can be repeskent
and analysed as a semi-Markov process. In order foritatau@ results to be derived, it is necessary to impose
some qualitative restrictions on the net, as in som@mstances it is not possible to determine whetter
necessary preconditions for employing semi-Markov meemalysis techniques have been met.

3.7.1. Preparation

The following areas had to be considered when fatgnimow to implement GSPN support in PIPE:
1. Modifications to saving and loading of PNML files

2. Graphical display of timed net elements

3. The details of these two points are discussed elsewthérisireport.

4. Graphical display of analytical results

The most logical way of enabling the user to accesseabats of GSPN analysis was through the PIPE
module interface designed by the original PIPE gr&ast of the PIPE GUI enhancement work undertaken
by the current project team involved creating a $ewidget classes to standardise the appearance and
simplify the implementation of existing analysis moduldsing these classes made displaying the results
of GSPN analysis a straightforward exercise. HTML anshwere included in the text display to allow
navigation between tables of results and detailseofthtes those results applied to.

5. Generation of analytical results

This point took up the majority of the time requiredirnplement GSPN analysis in PIPE. The effort was
divided fairly evenly between background reseanmcth enplementation. Research areas included general
Petri net theory, matrices and linear algebra.

3.7.2. Implementation

Following research, the implementation was construasefbllows:

1. An assessment of whether the necessary preconditions S®NGhad been met was written (i.e. a
gualitative analysis). Firstly, a test as to whethehkohed and immediate transitions are present is
performed. This is a straightforward query of the yawé transitions in the DatalLayer of the net to be
tested. Next, a test as to whether ‘Condition Equalfi@t is satisfied is performed. The algorithm
checking this condition is contained inpipe.modules.GSPN.java , in method
testEqualConflict (DataLayer data)

A GSPN (PN, T;, T,, W) satisfies condition EQUAL-Conflict iff

Ott'OT etnet'20={tt} OTof t§ OT,

2. If the conditions of the qualitative analysis aret matisfied, the analysis terminates. Otherwise a
guantitative analysis begins. There are several pattsst

2.1. Quantitative analysis of GSPNs entails making a distindtietween states that are tangible (i.e. those
states where the only enabled transitions are timediti@rs) and vanishing (i.e. those states where
an immediate transition is enabled). In order tohi® it was necessary to determine the state space of
the net, i.e. the set of all possible markings of e The original PIPE implementation contained a
method for traversing the state space of a placsitiam net using a tree structure in order to assess
certain qualities of the netfyNode.RecursiveExpansion()). This method did not retain the
net states anywhere, nor did it have any supportifieed transitions. It was therefore decided to
introduce a new container class to hold state spacee afet (class StateList — an Arraylist of int[]

10

2.2.

marking and arbitrary marking name), and to ovetld®e existing RecursiveExpansion method to
add each unique new space to a StatelList containktaie account of whether timed transitions
were enabled when deciding whether a marking shdmddjudged as reachable or not. The
reachability set of the net is then separated intgiltdenand vanishing states.

Using the lists of tangible and vanishing states, théahitity of transition between two specific
states is calculated, using the following definition:

W

it tOT| M [t>M E M

o, — v = PV M) 0EN(
2w

where Mk’Mr are two states of the net.

This calculation is implemented in the GSPN module n i method
probMarkingAToMarkingB(DataLayer pnmlData, i nt[] markingl, int[

marking2)

2.3. Applying this probability calculation to the entstate space of the net generates the matrix P where:

CcCD
P=

EF
C is the matrix of transition probabilities from vanishing states to vanishing states,
D is the matrix of transition probabilities from vanishing states to tangible states,

E is the matrix of transition probabilities from tangible states to vanishing states,

F is the matrix of transition probabilities from tangible states to tangible states.

2.4. The qualitative preconditions referred to above enshie existence of a steady state distribution of

the embedded Markov chain of the net. This distitlouis derived from the global balance equations

AP=frand Y =1
M;OTrgv
where 77 is the steady state distribution of the embedded Markov chain
T is the set of tangible states
V is the set of vanishing states

M; is a marking

2.5. Research was required to determine how to calculatdusion of the global balance equations. The

findings of this research were that linear programnmmgghods would need to be employed as the
problem essentially involved solvinglinear equations with unknowns. The technique for tackling
this type of problem is known as Gaussian eliminatiath iamolves a process of multiplying matrix
rows by a factor then subtracting them to eliminatens, rearranging rows to ensure a triangular
placement of coefficients, and substituting backwé#odsbtain values for each term. The possibility
was considered that an open source implementatioreafehessary algorithm might exist, and that
this might be used in PIPE to reduce development tifoether investigation did not uncover any
suitable code, so a Java implementation of Gaussian ti@duwas written based on textual
descriptions of the algorithm. However, the reseavah fruitful in assisting with the production of
some required intermediate calculations. In particutawas found that the Jama matrix library
contained a method for calculating a matrix invelsavas therefore decided to include the Jama
library within PIPE, as re-implementing this partenutalculation would have been an unnecessary
distraction from the core development effort.

2.6. The complexity of producing a solution of the globalance equations increases with the number of

unknown terms. This number of unknown terms can becest] thereby increasing the efficiency of

the computation, provided no timeless traps existifiie not possible for the net to get to a position
where the only reachable states are vanishings$tdetri net theory has shown that satisfaction of
Condition Equal-Conflict is sufficient to prove abserof timeless traps; hence our initial qualitative

11

analysis proves that a reduction of states to beidamsl can be performed. This reduction takes the
following form:
AP =7rand) 75 =1
i

1

where P'=F+E*(I-C) *D
C, D, E, F have the meanings described above

| is the identity matrix

The principle behind this reduction is that we knbe steady state distribution of being in a vanishing
state for the embedded Markov chain of the net wéllZero, so the only states that need to be
considered are tangible states.

2.7. Once the steady state distribution of the embeddadkd¥ chain of the net has been calculated, it is
relatively straightforward to determine further dueeristics of the net. In particular:

The mean number of visits to marking M, between two consecutive visits of marking Mj is

_7
Vij_ﬁ'—j

The sojourn time t5(M) for tangible marking Mj is given by
> W
1, HENT (M)
The mean cycle times {.(M;) for tangible marking M; is given by

A

tC(Mi)=% where)Z =Z7~TI *ts(Mi)

The steady state distribution for tangible states 77 is given by
r— ts(M i)
=
tc(M i)

2.8. Finally, the throughput (i.e. the mean number dhdis at a steady state) of each transition can be
calculated. A different approach needs to be talegedding on whether the transition is timed or

immediate.
Throughput dJ of timed transition '[j = Z ITV\1
MiDENj
Wi
h J
Throughput dJ of immediate transition tj = z Z Wk

M; DEN; nV kit JENr (M)

where r = 7*E*(1 -C) -1

E=)y MM OT, M OV

A variety of matrix operations were used to genettatge results.

The computational complexity of producing these regal function of the size of the state space ofi¢helt
was decided to impose a limit of 10,000 nodes on #reedfithe state space to be analysed, as PIPE isrilyima
intended a graphical editing tool rather than ehfpgrformance analysis tool. If a user attempts tdoper
GSPN analysis on a net with more than 10,000 nodesxeeption is raised suggesting they use a more
appropriate tool such as DNAmaca.

12

3.7.3. Problems encountered

The extensive nature of changes to PIPE componenseaanstability in the behaviour of various grajghic
elements. In particular, for a large part of thejgeblifecycle it was not possible to save or loatsn&his
caused difficulty in testing the validity of the résyproduced by the GSPN analysis module, as it was ot
possible to create or access example nets in ord@wotheir output.

3.8. DNAmaca interfacing

The standard DNAmaca interface is via the commandTihe following procedure is required:

1. Create Petri net description file in DNAmaca formatdd file). A full description of this file format can
be found in Knottenbelt (1996).

2. Pass the mod file as an argument to a wrapper progmdai for the Markovian analyser. This compiles
the .mod file into an executable named ‘uniformhifarmisation based passage-time analysis for Markov
chains.

3. Run the ‘uniform’ executable, capturing its standaudput. The passage time results are marked with a
‘DATAQ’ tag.

Required features of a module designed to interfatethis tool are:
1. Create .mod file from net currently being editingRIPE.
2. Provide GUI to specify run time parameters to DNAmaca

3. Wrap ‘urta’ & ‘uniform’ external commands and theitogress in as transparent a means as possible, such
that the user is not made aware of their existence

4. Accept and parse results from ‘uniform’, display inuiao and graphical form within PIPE GUI

An alternative means of accessing DNAmaca is via atdienver interface. However, after investigation of
tools provided to us, it was concluded this would bieasible.

The principle challenge for this module would be diang the inter-process communication - wrapping the
above procedure in such a way that an external cochfirentool would appear to be an integral paPiiE.

Another issue was the length of time taken for amglyad how this would affect the responsiveness of the
GUI. For this reason, the decision was taken to rumtiadysis procedure in its own thread.

The initial dialog presented to the user follows thieEPstandard of a single html pane to display resulds an
user feedback. A separate section allows the user tifysppetions, which will be included in the generated
.mod file or passed as command line parameters.

_}{DNAmaca x|
~Results
Copy Save
~Conditions
Source condition: Target condition:
Tsware (0.1 | TSwp:[30 | TStep:|o.1 [Cumulative
Run DMNAmaca

Figure 9 — the initial DNAmaca module interface

13

Once the user has entered the relevant optionsRtireDNAmaca’ button would be pressed. After some initia
checks to ensure the ‘urta’ script is available be system path and the net is a valid GSPN, the
generateMod() method is called. This creates a string containirgg .thod file that will be passed to
DNAmaca for analysis, extracting information from ataLayer. An example output is shown below.

\model{
\statevector{
\type{short{PO, P1, P2, P3, P4}
\initial
P0O=1;P1=1;P2=1;P3=0;P4=1,
}
\transition{TOH{
\condition{P0 > 0 && P1 > 0}
\action{
next->P0 =P0 - 1;
next->P1=P1-1;
next->P2 = P2 + 1,
}
\weight{1.0}
}
\transition{T1}H
\condition{P1 > 0}
\action{
next->P1=P1-1;
next->P3=P3 + 1,
}
\weight{2.0}
}
\transition{T2}
\condition{P3 > 0}
\action{
next->P3 = P3 -1,
next->P4 = P4 + 1;
}
\weight{3.0}
}
\transition{T3}
\condition{P2 > 0}
\action{
next->P2 =P2 -1,
next->P0=P0 + 1;
next->P4 =P4 + 1,
}
\rate{5.0}
}
\transition{T4}
\condition{P4 > 0}
\action{
next->P4 =P4 - 1;
next->P1=P1 +1;
}
\rate{4.0}
}
}
\passage{
\targetcondition{P4 == 3}
\sourcecondition{P4 == 1}
\t_start{0.01}
\t_stop{3}
\t_step{0.01}
}

A thread is then spawned to handle the DNAmaca extgmoaess. This thread extends the utility class
SwingWorker, which is provided by Sun as a recommeénukey for implementing lengthy operations within a
Swing application.

The SwingWorker thread allows the PIPE GUI to remiaBponsive, but it still leaves the problem of prowgd

the user with feedback on a possibly lengthy operatior this, the Swing JProgressMonitor was component
utilised. This is shown below.

14

% Progress... x|

Running DNAmaca
Generating state- space...

&

J%g

Figure 10 — the DNAmaca progress dialog

Both the status text, indicating to the user theeriractive task, and the progress bar itself, aretedday
parsing the output of the ‘urta’ & ‘uniform’ processssanning for a list of control strings. As each cdntro
string is detected, the relevant properties of thenworker thread are updated.

A separate Timer object handles updating the progresstor. This object also closes the progress monitor
and enables the ‘Toggle graph’ button when DNAmaedyais has been completed.

Once the analysis is complete, a table of results ist@tsato the html result pane asy values. These results
can then be saved, and opened directly within Efaefgraphing or analysis. However, a simple graphing
feature was added to facilitate visualisation of dataimage showing this is below.

}{'DNnmaca x|
~Results graph
1. 6EE61
2. 9%
Save
~Conditions
Source condition: [P4 == 1 | Target condition: [F4 == |
T S5tart: |0.01 T Stop: |2 T Step: (0.01 [CJ Cumulative
| RunDNAmaca || Toggle graph |

Figure 11 — example passage time analysis graph
The graph can also be saved as a PNG file if desired.

Once the user has finished working with an initialafeesults, it is possible to change the parametetgam
DNAmaca again (for example, to fine-tune the timege).

3.9. Object selection

Among the most useful new features in PIPE this yetrd ability to select objects which have been place
the net — either individually or in groups — and mtvem around the screen or delete them. In the atigin
PIPE, this was possible to a certain degree via theeéfmaode, which permitted the user to drag places and
transitions around the screen — provided that theg weattached to arcs — and the ‘delete’ mode wiocid
delete individual objects.

15

3.9.1. Selection mode

The ‘move’ mode is gone, replaced by a more genercenode, which the user can get to by pressing the
selection button in the toolbar, using the menu mpsr by pressing the S key at any time. In this madkle,
user may do a number of selection-related operatamdescribed below.

The fact that objects are selectable at all is duernamber of modifications in the PetriNetObjectslarom
which all the net-editable objects inherit. All Re&tObjects now haveselect() and deselect()
methods; methods for ascertaining whether the objexiriently selected; and a switch to determine whether
or not itcan be selected. Naturally, the user would like somel kifivisual feedback as to whether or not an
object is selected, and this is achieved by having ebftt draw itself slightly differently depending ds
selection status.

3.9.2. Dragging out a selection: the selection rectangle

The selection rectangle is a feature common to mostemodrawing applications, but one which was
previously absent from PIPE. It allows the user ickdhe mouse at a point on the screen and todham out

a rectangular shape to enclose some portion of thtehgdvindow. If any portion of a selectable object
intersects with the rectangle, then it is itself setbctdne selection is updated in real-time by refreshiergery
time the user drags the mouse.

] m}
Sender transport tagl

Figure 12 — example of selection rectangle usage

The creating of the selection rectangle (as well astions involving the current selection) is handlgdamew
class —pipe.gui.SelectionObject . One instance of SelectionObject is added to evenyiéw pane
object created (i.e. the editing window), and itaeinsions are such that it occupies the entire editaiela. The
selection rectangle (the large semi-transparent rgietaghown in the above screenshot) is thus drawrhen t
SelectionObject itself, as opposed to in the editiagep but this is mainly a matter of convenience. Nise a
that since each GuiView instance has its own Selech@u@ calling the SelectionObject methods will not
affect the selections present for other open netsyimary.

When processing the selection (by calling Selectiga@ls processSelection() method), those objects
contained within the rectangle are selected aftesst fideselecting everything else by calling
clearSelection() (unless the Shift key is being held down, in whitdse no deselection occurs).
processSelection() does this by getting a list of all the componentthim GuiView editing pane and
then iterating through only the PetriNetObjects (8wectable objects), checking whether the rectangle
intersects the bounds of each object, except in the charcs where we check for intersection with tleésar
associated ArcPath object.

16

3.9.3. Clicking on objects and using the Shift key

Whilst dragging out selection rectangles is very Usefiten a user will want to select or deselect iralinal
objects, and this can be achieved simply by clickongthem. All subclasses of PetriNetObject implement
mouse even listeners, themselves all subclassed froil&€ibjectHandler, a generic handler which provides
all the mouse-related functionality for any editatiigects the user will place in the window.

This basic handler has now been expanded to ingugport for selection of objects upon the user clicking
them whilst in selection mode. Objects may be indigijuadded or removed from the current selection by
clicking on them while holding the Shift key. Thisaghering to the accepted interface practice of mastern
programs.

3.9.4. Movement and deletion of selections

Whereas in the original PIPE the user had to eiitfeeremove’ or ‘delete’ modes in order to do anythinith
objects already created, all movement and delefi@xisting objects is now accomplished by first selectn
object and then performing the required action. ®foent can be achieved by dragging the selection (by
clicking on an already selected object and dragdgfingefore releasing the mouse button) and deletipn b
choosing ‘Delete’ from the drop-down menu or simpigssing the Delete key.

As mentioned before, the SelectionObject class takesofanost operations involving selections, regardless of
whether only one object is selected, or many. In #ee ©f moving selections of objects - by dragging one
member of the selection — the member object in qurestlls SelectionObjectsanslateSelection()

method, passing to it as parameters the x and y distdoycahich it should be moved. As such, individual
objects don't have to concern themselves with othercssd objects directlyranslateSelection()

operates similarly tgrocessSelection() in that it gets a list of the objects contained by &uiView
object, then iterates through them all and — if they both subclasses of PetriNetObject and are themselves
selected — it will translate their positions by thguisite amount.

The deletion of objects upon pressing Delete or chgost from the menu is similar, in that the
SelectionObject'sleleteSelection() method is invoked, and much like the other seleeti@e methods
it iterates through all the potentially deletablgeaks, calling the delete() methods for those whiatetects as
being selected.

Upon deletion, all PetriNetObjects remove themselves ftheir parent GuiView container, and also cadl th
relevant DatalLayer objecti®movePetriNetObject() method, passing a reference to themselves as a
parameter (apart from ArcPathPoint objects, whichxataLayer is oblivious to, and they to it). In thiay the
internal representation of the Petri net reflectsgitaghical representation the user sees. It shouldteel that

the DatalLayer, when removing a Place or Transitiofi, additionally iterate through all the attachedcA
objects and remove those too, calling tliglete() methods as it does so.

3.10. Curved arcs

The specification was to allow drawing of multi-seginarcs containing both curved and straight segments.
Any implementation must be both intuitive to use gmndduce an elegant result, given that the nets can be
exported and printed for use in lecture slides asaglieing analysed and animated within PIPE. To this end

1. A line being drawn should render exactly as it wigpaar once it is drawn, giving live feedback on the
result

2. Curved sections of arcs should intersect with placegetaially, and should intersect with transitions at
right angles

3. Curved sections of arcs should be collinear with sttagbtions at the point of intersection

4. In addition to the above two requirements, the wiehgth of a multi-segment arc should appear smooth
at straight-curve intersections and end points

5. The only user input should be the position and tyfpeach intersection point on the line; curves satisfy
the above constraints should then draw automatically

6. Points can be removed from multi-segment lines antlyfieeof each point can be altered once the curve is
drawn

A variety of algorithms for interpolating curves thgh a sequence of points were considered and evaluated
both against the above criteria and their relatimeeeof implementation. In particular, to satisfy theal
condition above any algorithm had to generate its oantrol points for curve drawing without input fraire

user. The decision was taken to use an algorithm fogrgéing natural cubic curves, interpolated acrogsaan

17

arbitrary number of curved points and returning tacéeBézier control points. The curves can then edsily
rendered using built-in Swing and AWT functions. Ttwaole arc can then be drawn using an AWT
GeneralPath object using only lteeTo() andcurveTo() functions and the control points be directly
overridden to satisfy the aesthetic considerationdinedt above. The ArcPath class encapsulates the
GeneralPath and provides the custom functionalisgideed here.

The control points are overridden directly ratheairt simply clamping the gradient at the ends ofdihigic
interpolation to ensure there are no sharp bendsinuhve at any intersections. This also reduces the foe
calculating angles as in most cases the control poiatsaculated from the differences between pointserat
than the angles. The overall algorithm for dranangurve is:

for (each point)

i f (straight point) /I point being drawn TO determines type
set control points collinear with point & last point
el se
while (curved point)
calculate natural cubic interpolating the poi nts
set appropriate control points for each curve d point

f or (each point)
i f (pointis curved & previous point is straight)

override first so that it is collinear with pre vious straight line
i f (pointis curved & previous point is straight)
override second so that it is collinear with pr evious straight line
f or (end points)
set control point so that c, point, centre of pla ce collinear
set control point so that arc meets edge of trans ition at 90°

Figure 13 — Diagram illustrating locations of contol points. Note that where a curve intersects a place, thigecefthe place, the end
point of the arc and both control points are celfinto ensure a smooth transition.

An algorithm allowing local control of points wasaatzioned. This decision was taken because integnattbn
PIPE would add unnecessary extra complexity withaldirag significant end-user benefits; specifically,
appearance of the printed/screen rendered diagrarossgnificantly improved.

3.11. Arc-transition entry points
The issue of arc-transition entry points was not meetioin the original specification, but became cheathe

project advanced. It is therefore necessary to sp#uifyproblem before describing the methodology used to
solve the problem.

3.11.1. Specification

In more complex nets, it is possible to have sevecal @ntering or exiting one transition. This presergs th
problem of how to arrange the incoming arcs to enthaeesulting diagram retains clarity, while looking
professional (one of the goals of the project). Thgimal version of PIPE employed a simple solution,

18

positioning the arrows depicting the direction & tlentre of the arc. All arcs connecting with agiton
would then be drawn to the centre of the transifidnis is illustrated below.

Figure 14 — Original PIPE implementation of arc-transition entry

This solution is now inappropriate for several reasbirstly, with multi-segment arcs it no longer makesse
to have the direction indicator at the centre o&em since the arc centre is no longer well defifiée:. solution
is to have the arrowhead at the terminating ench@fra. This then brings the problem of several arradbe
converging at a single point (if the arc angle dfers similar) making the resulting diagram diffictdtread.

The second reason is related to the introductia@unfed arcs. With curved arcs, it becomes possiblestoict
the angle of entry for arcs connecting to a trémsito being perpendicular to the transition eddetérfaces
with. The intention here is again to increase clantihe resulting diagram.

For these reasons a new algorithm to calculate tedace points of arcs with transitions was required.
3.11.2. Methodology
The design for the new algorithm made the followieguirements.

¢ Arcs connecting with a transition should be dividieih 4 quadrants based on their angle of entry iméo t
transition. The quadrants corresponding to the smadlges of the transition should have smaller ranges:

Figure 15 — arc entry quadrant division
* Arcs in the smaller quadrants should be connectdteatentre of the relevant transition edge.
* Arcs in the larger quadrants should be spread at istprid intervals along the transition edge.

e Arcs in the larger quadrants should be ordered byeamsgch that arcs do not cross each other where
possible.

e The algorithm should deal appropriately with rotaieahsitions of arbitrary angle.
To illustrate these requirements, a contrived exansméaown below using the resulting algorithm.

19

Figure 16 — an example of the desired (and obtaingdutput

The final algorithm is described below using pseudocode:

ArcArray connectedArcs = all connected arcs to this Transition;
sort connectedArcs by entry angle;

ArcArray top, bottom, left, right;
foreach arc in connectedArcs {

currentAngle = currentArc.angle — thisTransition. angle;
if (currentAngle in top quadrant range) add curre ntArc to top;
if (currentAngle in bottom quadrant range) add cu rrentArc to bottom;
if (currentAngle in left quadrant range) add curr entArc to left;
if (currentAngle in right quadrant range) add cur rentArc to right;
}
transform = rotation transform of thisTransition.an gle;

foreach arc in top

set connecting point of arc to transformed centre of top transition edge;
foreach arc in bottom

set connecting point of arc to transformed centre of bottom transition edge;
offsetincrement = transitionHeight / (left.count + 1);

centreOffset = transitionHeight — offsetincrement;
foreach arc in left {
set connecting point of arc

to transformed (centre of left transition edg e + centreOffset)
centreOffset -= offsetincrement;
}
offsetincrement = transitionHeight / (right.count + 1);

centreOffset = transitionHeight + offsetincrement;
foreach arc in right {
set connecting point of arc
to transformed (centre of right transition ed ge + centreOffset)
centreOffset += offsetincrement;

}

A problem with the above algorithm occurred whereaemangle became greater than Zhe routine which
calculated the arc angle would then wrap the argjlened to zero, which confuses the sorting of andles
solution to this problem was to ensure that the angépping point always coincided with the edge of o
the quadrants.

The positioning routine was later extended to constitee entry angle of curved arcs, such that theyldvbe
perpendicular to the transition edge to which theynected. An example of this is shown below.

20

PO

PlO

P2

Figure 17 — constrained curved entry to transition

Since the algorithm is capable of recalculating tadl tonnecting positions of arcs for a transitionrateo the
user is able to drag a place around a transitiorsaadhe changes updating dynamically.

3.12. Arc path manipulation points

Since multi-segmented curved and straight-line amesanew feature in this incarnation of PIPE, thepaints
(pipe.datalayer.ArcPathPoint — subclassed from PetriNetObject) are new. Unlikecéd,
Transitions, Arcs and Annotations, however, Arc poares not bound to the underlying DatalLayer instance
representing each net, but rather to the ArcPatcobf the associated arc. They provide a useful visaglto
represent the control points that determine the sbipiee path, and as such it is useful for the uséetable

to perform operations on them to modify the shapthefarc after it has been created, rather than gawin
recreate the arc from scratch.

The image to the right shows a simple 3-segment
curved arc with four path points — two at the start

and end respectively, and two in the middle. to 10

It was decided that in general, the user wouldn’t

want arc points displayed constantly, since they

would clutter the net view and they are only an faidshaping the arcs, not really a part of the tealfi
However, it would be nice if the points for a specdrc became visible once the mouse moved withimtaice
distance of it, or when the arc was selected. Theimity detection required for the former case isiaebd by
using Java Strokegafa.awt.Stroke),. Strokes can be used to create a shape that sefecbutline of an
existing shape (in this case the arc path), specifyingdth for the stroke that represents how thickahine
is. The Arc object'sontains() method therefore — in addition to its standard dontant tests — checks to
see whether or not the specified point is within pila¢h outline, and tells the path points to show alehi
themselves appropriately.

The image to the right shows how the appearance

of the arc changes once the mouse pointer is within

range. The circles represent the end of curved arc

segments, and the squares the end of straight

segments (the first point always appears square). "0 0
When the mouse is moved away, the points hide

themselves once more, unless either the arc or the

points themselves have been selected, in which casevithegmain visible until deselected.

Since they inherit from PetriNetObject and have mobaadlers which subclass PetriNetObjectHandler,
ArcPathPoint objects are selectable, draggable atefabbée. Additionally, since they use the local Geiv
instance as a container, as opposed to their parenvlject, SelectionObject operations are applicable
them, meaning that they can also be selected Wits¢lection rectangle, and may be dragged and delete
masseat the same time as other objects.

Most of the time, of course, a user will probably jugint to perform operations on a single point,
dragging/deleting it or maybe even toggling its tyg@ween straight and curved. Whenever the user does
anything to an ArcPathPoint object, it will signtsl parent ArcPath to re-create the path accordirtpe new
configuration and repaint it as necessary, ensuriagtite appearance of the arc reflects the statepositithe
point.

21

The image to the right shows the same arc ag:
after the third point has been dragged, reshap
the arc. The point remains selected, thus it is s
visible even though the others are not.

The second image shows that the user has usec
ArcPathPoint’s right-click menu to toggle th
point type from curved to square. The new sha
of the arc reflects the change.

When an ArcPathPoint object is deleted, it dele

the reference to itself in the parent ArcPatk FO o
pathPoints list (which is the list that the

ArcPath will iterate through as it generates the .

path), thus removing the control point it represemtsgdneral, an ArcPathPoint will refuse to deletdfitfsga
thedelete() = method) if there are only two points left on the because they are the required (i.e. the start
and end points!). This safety check is only bypasseshwitie parent Arc object itself is deleted, resulthreyin
ArcPath object calling the more sevéily) method on all of its points as part of its cleanup.

PO TO

3.13. Arc snapping

It was suggested that creating arcs might be made dgsteaving the arc-in-progress snap to any Places or
Transitions within the vicinity of the mouse pointebut only to the type to which the arc might attljube
attached. This is achieved by modifying the Place Brahsition classes to incorporate proximity detectio
similar to that implemented by the Arc class to deieemvhen to show or hide path points.

Stroked outlines are created of the Place and Ti@m®bject shapes, and checking for intersectidth these
is added to the standactntains() method checking for those objects. A Place/Transitidhtherefore
check to see whether the mouse pointer is containédnvtite bounds of that outline and additionally vileet
the local GuiView object is presently creating a reaw. If this is the case, the Place/Transition wijiae a
handle to the associated Arc object and instruct iattach itself (superficially — not at the level dfet
Datalayer) by setting the arc’s target to that Plaarsition, but only if the arc’s source is of thgposite
type. The arc is then told to update its path, asayeother connected arcs whose position has beerneaffec
When the mouse moves out of range, the arc will ceabe ‘attached’ to the object and will be freddtiow
the mouse again.

3.14. Annotations

The pipe.datalayer.AnnotationNote class allows the user to add annotatio
to the net, and as such can be very useful, espeéialliarge, complicated nets. The | Hate to zelf:
notes themselves inherit from PetriNetObject, makimegn automatically selectable an
draggable, and the text-editing functionality is \pded by a Swing JTextArea,
contained within the object. An AWT RectangularShaprovides the enclosing

rectangle.

1

The note can be edited by double-clicking it, om \he right-click menu (its e
AnnotationNoteHandler mouse handler tells it to beeditable and focused in bot | Mote o self _
cases). The defautteselect() method was also overridden so that in addition ~[JTlis is the best Petri

deselecting the component it also tells the JTextfredop being editable. Het E‘fm'!l_'
In addition to the JTextArea, AnnotationNote also esras a container for eight resiz |
points @nnotationNote.ResizePoint), implemented as subclasses of JComponent. Thesewagsal

drawn with their centres at each of the four cormérthe rectangular border bounding each AnnotataeN
object, and also at the midpoints of the lines ofrdwangle. They are only painted if the annotatibject is
selected, including when it is being edited.

Upon creation, each resize point is given a binargkmehich indicates whether it is responsible for thg to
bottom, left or right sides of the annotation (or soowmmbination of these). When its mouse handler
(AnnotationNote.ResizePointHandler) detects a drag, it calls the componenttag() method,
passing it the Grid-modified mouse coordinates. ditag() method then checks the point’'s movement mask
to determine how many of the AnnotationNote’s sizgistthg methods to call (e.g. if the point is resporsibl
only for the top of the rectangle, it will caltljustTop() , giving it the y-offset to adjust by, etc.).

The points don’'t bother updating their own positioas, these are updated automatically when the
AnnotationNote calls its ownpdateBounds() = method. This is important since the AnnotationNotehtig

22

refuse to grow any smaller if it means that the teghawvould become too small to display all the textoAl
with regard to this, it was decided that it woulddmeod if the note would resize automatically asuber was
typing, to accommodate all the text. Since the ootdd be made to resize in any direction, it was gindbest

to simply have the user set any width, and then hawentte extend only downwards as required. This also
means that the note will automatically grow in heiftthe user is attempting to decrease its width beytsnd
ability to contain the text (for all of this, the XfArea’'sgetPreferredSize() method is called, and only
the height value of the Dimension object it retusigsed). If, however, the user attempts to decreaseitet

too much, the note will refuse the change sincewttith doesn’t auto-scale. Additionally, there absaute
minimum widths the AnnotationNote will not shrink beyl even when empty.

The modification of the Annotation’s bounds is ilkaged in pseudo-code below:

updateBounds() {
newHeight = note.PreferredHeight;

if ((note.height < newHeight) and (newHeight >=m inimumAllowedHeight))
then note.height = newHeight;

rectWidth = note.width + RESERVED_BORDER,;
rectheight = note.height + RESERVED_BORDER;

rectangle.setFrame(RESERVED_BORDER/2, RESERVED_BO RDER/2, rectWidth, rectHeight);
setSize(rectWidth + RESERVED_BORDER,rectHeight + RESERVED_BORDER);
note.setLocation(MIDDLE_OF_RECTANGLE);

updatePointLocations(); /1 update resize point |ocations.

}

Notice that the size of the bounding rectangle ¢caiéctangleabove) is generated based on the size of the
JTextArea component (calleabte. The text area is then positioned within the ceotrhe rectangle.

TheadjustTop() , adjustBottom() methods called by the resize points check thatéfghhnote height

will not decrease below its preferred height befofeanging it, whilst theadjustlLeft() and
adjustRight() methods check to make sure that the width doesn’edserbelow the minimum allowable
width.

3.15. Module manager

One of the much-touted features of the original PVRE its ability to extend the functionality of thasic
program by loading external program modules — thisugedl both the base analysis and classification modules
provided with program, as well as any additional austnade modules written by anyone wishing to add new
features to PIPE. The idea was to have a standaedidearface that all modules would have to implement,
setting out the basic methods necessary for all modul®E Rould then use Java’'s Reflection API to
dynamically load the module classes at run-time arldieazde methods as a way of running the module, having
passed it thpipe.datalayer.DataLayer object representative of the current Petri netdeitited.

The original implementation was, however, fraughhvaroblems, the two main ones being that:

1. The module to load had to be in the JVM'’s class pathich would usually consist of PIPE/bin
directory and the runtime library directory tree

2. PIPE automatically generated the module’s packageatthy based on its directory structure, e.g. if the

path to the module’s main class (starting from PIPE&In directory) was
/modules/magic/analysis/ SuperAnalysis.class , then the full class name generated by
PIPE for use with Reflection would bwaodules.magic.analysis.SuperAnalysis . Thus, if a

module was not within PIPE/bin directory with a relative folder structure exaathatching its package
definition, it would not be possible to access itRiflection and it would fail to be opened.

The combined effect of the above problems effectimedant that PIPE’s ability to load modules aftertafar
was pointless, since the only modules it could possdag Wwould already have been loaded by the recursive
module search that it performs on startup anyway. & hes problems have now been addressed, with separate
techniques employed in each case:

1. To get around the class path problem, a new cfaps.fui.ExtFileManager) was employed, for
loading external classes. It uses a URLClassLoaderhvisicapable of storing an array of class paths in
URL format, and as such a new path can be addedcasneav module is loaded (provided it actually
differs from old paths). How the path is generateexplained below.

23

2. It is difficult to determine what the top-level pacle directory of an arbitrary .class file actuallyasd
without this the class cannot be loaded. Thereford) eedule now has a .properties file associated with it
(making use of thgava.util.Properties class), located in the same directory as the dingetb
the top-level of the module package hierarchy. Tiogperties file contains the fully qualified name bét
main class of that module.

The directory containing the properties file is addseda new class path URL, so there is no longer dgmmob
with the JVM being unable to load the module clasgeis &lso easier to open a module by ‘running’ its
configuration file rather tan having to navigatevdico its main class file.

The module manager supports modules with multiple cordot functions contained within them, by using a
tree structure to display them. It now automaticaitpands all of the branches; relabels the defan()

method with the enclosing module name; and, if a feodontains only one analysis function, removes the
parent branch so that only the leaf is visible. Tneatly enhances the functionality of the module rganay
allowing immediate viewing of available analysesaote labelling and an uncluttered view.

1 Analysis Module Manager |1 Analysis Module Manager
§ [Available Modules =] Available Modules
D Classification | | i # State Space Analysis
D N | (R # Simulation
Cum.parlsnn e | # Incidence & Marking
¢ OnvariantAnalysis. | | # Invariant Analysis
DI 17 I # DiAmaca
@[Incidence & Marking | | # Comparisan
& Simulaton | | i # Classification
@ [State Space Analysis | |7 ' GSPN Analysis
] e # Find Module
|__°‘| Find Module

Figure 18 — The old and new module manager interfas

None of the included modules needed the abilityawehmultiple independent analysis functions, so this tree
simplification algorithm effectively hides this funatiality, even though it is still available for futuextension
modules.

3.16. Grid

It was decided early on to incorporate a ‘snaprtd’ gunctionality to facilitate drawing neat nefshis was
implemented as a class to contain the grid size, dnawgtid and allow components to align to the grid by
calling functions to get the nearest grid positiongaivenx, y location. The grid cycles through ¥ax, ¥2x and
1x the Place/Transition size, and off. User accegshrimugh a menu option and a toolbar button to cycle
through the four settings. This provides the necessaugti@nality without needing the user to specify agmi

grid sizes, and ensures that components are spacempirion to their size.

3.17. Export and printing

Java’s enhanced drawing code, known as Java2D, supjavting of objects in a vector-based format which
is intentionally compatible with the PostScript spieeifion. This vector-based specification allows olgeot
be rendered at varying resolutions without loss ofliyuarhis can be leveraged through Java’s printing
mechanisms because JVMs supply by default a printeiceesbject which can “print” to a PostScript format
stream; by directing this to a file, PostScript cotilpe files can be created.

By a similar method, Java is able to match the docurfieentat with available printers to give the ability
print the current net. This capability is somewhat kdiby Java’s infamous printing support, which is offset
by the ability to print the exported PostScriptdilgiving identical results.

Finally, by rendering the net to an off-screen bitm#gva’s ImagelO classes are able to export it to M@ P
bitmap format, which is very widely supported by viebwsers.

All of these facilities were implemented in the mgsheralised way possible, within a static Export clBgs.
doing this, it not only allowed the export functitihato be easily extended from the initial purposk
exporting Petri net images to the ability to exmpephs by the same function, but also allows poterdiake
of the code in other projects.

The next figure is an example of the output it isatde of.

24

Sender application
task P17

Receiver application
task

Courier 1 Courier 4

P18

Sender session Receiver session te

task P19

The Courier Protocol Software

GSPN

Courier 2 Courier 3

Sender transport
task

Receiver transport
task

Network delay

Figure 19 - the Courier protocol

3.18. Example nets

In order to easily demonstrate the usage of Pefsitoatepresent different concepts, a submenu has déed a
to the File menu to allow the user to load one oEssEvexample Petri nets. This menu is built dynamjoadi
startup by scanning tiexample nets subdirectory of the program base directory, creagimgction object
for each file which will load it when performed, andkating a menu item object using this. The exampte
include:

» Readers and Writers — models a system in which 3 readerone writer concurrently access some storage
space. The readers cannot access the storage whiletireis writing.
25

e Simple GSPN - a simple example illustrating the prioge of a GSPN taken from Bause and Kritzinger
(1995) (p. 180). Primary example used in testing odPS$odule output.

« Dining Philosophers — a representation in Petri netnfof the classic Dining Philosophers deadlock
example.

e Producer & Consumer — models a producer-consumer sysigna limited buffer capacity. The timed
transitions T4 and T5 represent the processes of pioduend consumption. The immediate transitions
represent deposit or retrieval of data items from tiféeh

e Courier — a model of the ISO application, session @madsport layers of the Courier sliding-window
communication protocol (see Dingle, Harrison and Kerdielt (2002)). lllustrates PIPE's competence in
handling substantial net diagrams.

3.19. Animation mode

The original version of PIPE had originally intendedsupport animated display of net activity throughdom
firing of enable transitions at repeated time intexvBlowever, it appears this development was stopped aft
encountering the problems associated with the uderefding with Swing, and reduced to the abilityite a
single random enabled transition instantaneoudly aitoolbar button.

When implementing true animation, it was still dediealb use threading because it allows the GUI to remai
responsive during the animation, which allows aniomato be easily terminated. However, rather thangisi
Java’s Thread object, th@vax.swing.Timer class was used. This encapsulates a thread with co@alto
with the conflicts with Swing, with the aim of implemting a task at repeated specified intervals; hesegfore
ideal for this purpose. When animation mode is enal@etimer object is created with an anonymous inner
ActionListener object attached, which calls the rRandomFiring() method, as well as maintaining an
internal firing counter. By having the random fgirencapsulated in a method which deals with alleissu
(finding enabled transitions, choosing one at randaing it, and maintaining the data in the Dataligyé is

still possible to have a button for performing a snglndom firing. The flexibility of the Timer objeallows

the user to specify the firing delay for the deseédct.

26

4. ADDITIONAL BUGS FIXED IN PIPE

In addition to the above functionality improvementd amtensions, there were many more bugs in PIPE which
have been fixed. While innumerable problems were fixgithin the course of some other task, without
recourse to recording the minutiae of the error @silution, below are brief mentions of some of gsiés
resolved.

e Animation history now records random firings

This is an invaluable aid for allowing random firitp be traced backwards to discover the route tticplar
state.

e Use of mouse motion listeners to trigger repaintingonssd

It is apparent that in many of their GUI implemerdga$, the original PIPE team found that there were
problems with the components failing to repaint. Téason for this was not determined because, during the
course of reimplementing the GUIs more simply thesdlpros disappeared; it is thought that there may be
some incompatibilities in the Sun JRE when interfacesianecessarily complicated. The manifestation of the
problem was that interfaces, especially in the madweuld flicker and, on many occasions, stop flickeiing

a state where no components were drawn, leavingtadane for the user. The solution was to call thepar
frame’srepaint() method as often as possible; their solution was ttidart a mouse motion listener. The
effect of this was to trigger a repaint of the GUhaether needed or not, every time the mouse was moved,
which could be more than 100 times per second. Thimobly caused the program to use more CPU time than
necessary, and resulted in an unresponsive interface.

e Limitations on number of open files

The original implementation of PIPE used a set ofcstatays to maintain pointers to GuiView, DataLaged
File objects for the currently open nets. Its aldwnis for handling the creation of new tabs were sstipli
simply shuffling arrays to remove gaps and silently iefyuso open more than five tabs, or to allow thelfina
tab to be closed. Its algorithm for determining the néon@ew tabs was afflicted with this, as it woulchply
append the string “PetriNet” with the index of threag index into which it was placed, often giving tiple
tabs with the same title.

By replacing the arrays with ArrayLists, the restdatiupon the number of open tabs was removed. All code
dealing with management of references had to be teimgnted, which proved to be a large task due to the
level of coupling between classes; but it served asefulmechanism for exposing this coupling in oraer
reduce it. There were, in particular, many issuesnie final tab was closed, as many functions wouwdd th
return null references which were not handled bydhiing code. These were ultimately remedied thhoug
testing.

« Duplication of tab creation code

The process of creating a tab is relatively compligagetithe difference between creating a new, empte
and opening an external file is small. This code watbee consolidated into a single function, which dimp
creates an empty tab if the filename parameter is null

e Assumption of working directory

Much of the code in the original PIPE, and some efdbde in the current version, makes referencese® fil
stored within the same directory sub-tree as the bipagram files. For example, button images and example
nets are stored this way. It is possible to run a pavgram by defining “class paths” beneath which tocear
for the class files; however, it is not simple for firegram to determine which class path it is executiog
within. PIPE made use of simple relative file referes, which the operating system will append tcctireent
working directory; so, if the working directory wasong, PIPE would be unable to load any button iesagr
even its XSL files for loading files. This was remedieg determining the class root directory for an
instantiated PIPE class (the CreateGui object) thrahg Class object’s security protocols. It is now possibl
to run PIPE with a command such as:

java —cp ~/somefolder/PIPE RunGui
with no adverse effects.
« Better handling of file save prompting

In multi-document programs, it is common to promptuker to save any modified files before closing them,
and PIPE is no exception. However, when this chedkpalampt is done on shutdown, it is usual to be able t
abort the shutdown by choosing a ‘Cancel’ optionsTsas added to PIPE by modifying the default behavi

to require explicit window destroying, and to not tthis if aborted. This also allowed handling of sitoasi
where the user opts to save a modified file, but ttecels the file browser.

27

« Removed HandlerFactory class

While the usage of factories can be good practicausec it allows reuse of objects rather than creating
duplicates, the factory for mouse handlers in PIPEndidhave this ability and as such was pointless, simply
serving to slow down execution.

¢ Invariant analysis module now numbers objects correctly

It was numbering them from 1, whereas everywhere bé&edre numbered from 0.

« Object label editing cancelling no longer labelsdbgct as “Null”

* Fixed null pointer exception when clicking anywhbérg on a node in module tree
e Z ordering of net objects

By drawing net objects onto a Swing JLayeredPatfeerahan a JPanel, it was possible to enforce Z iogler
to give clear separation of objects that should béndedthers. For example, arc points should be drawweab
arcs and places. This ensures that nets look beitier anore importantly — that intersections and contants
of objects by other objects are detected when theyldtbe.

e Static CreateGui object

The CreateGui object contains methods for accessingodatae currently open nets and obtaining references
to them. However, this meant that it was necessargvery class that might need to obtain a reference ifrom
to be give a reference to the CreateGui objecffitSaice there must be one instantiated for theiegumn to

run, and there is no need for more than one to &taritiated, it was modified to be a static class wi#tic
methods and member variables. This effectively maddohally accessible and greatly reduced the level of
reference passing between classes.

* Forced update of each JComponent at each GuiVieanmegvent

During the initial review of the PIPE codebase, souhg lsehaviour was observed relating to the redrawtsven
occurring in the main drawing container, GuiViewer leach update event, PIPE would explicitly remoxerg
PetriNetObject from the GuiView. It would then lotirough all the PetriNetObjects, restoring them to the
GuiView. The only apparent point to this behaviauhich would force a repaint on all contained otgewas

to effect the removal of deleted components sineg tould not be restored.

The solution to this behaviour was to remove all of dbeve mentioned code, and add code to the delete
actions to remove the PetriNetObject from the Guivé®ntainer.

e Clipped Drawing of PetriNetObjects

A cosmetic issue with the original version of PIPE wasclipping of the display of PetriNetObjects. Tisi&
result of setting the object bounding box to being #ame dimensions as the object itself. Since Java2D
drawing primitives are anti-aliased, many of the iRetiObjects were actually drawing slightly outsideithe
bounding box, and being clipped in the process.

The solution to this problem was to define a constasdtifor all bounding boxes of a few pixels, allowearh
component to draw successfully.

28

5. CONCLUSION

5.1. Product evaluation

One of the primary goals of this project was to takesgisting program which provided basic functionality
and add the extended functionality which would makactually useable. The original version of PIPH fel
badly short in the areas of presentation (the abititycreate professional looking diagrams) and the Ul
flexibility required of a modern drawing tool.

In these areas, the second version can be considengctess. PIPE now possesses an interface whicheanyon
familiar with the standard drawing Ul can pick up arsg without application specific knowledge. Alltog
more counter-intuitive aspects of the previous versiame been removed (e.g. the requirement to position
places and transitions prior to attaching arcs), &edinterface has been streamlined where possible (e.g.
consolidation of the move/delete tools into one seladtol).

With regards to the ability of the program to prodpcefessional looking diagrams, every specified goal ha
been met. Some changes have been trivial such asimgyalaces to using an unfilled circle, while othéave
involved major engineering effort such as multi-segrmeemted arcs. The result is that Petri nets created in
PIPE are now of sufficient quality to be includedai publication. The important addition of PostScaptput
puts PIPE in the position of actually being a usé&jol, where previously it had neither the perforneatacuse

for serious analysis, nor the capability to outpuiaghm.

While much of the work specific to Petri net thebad been done by the previous group, significant rchsa
have also been made here. The addition of GSPN dyupput the creation of two modules capable of
performing analysis on them, opens PIPE up to a wialeclass of problems that would have been otherwise
inaccessible. The GSPN analysis module took considerabéarch time due to its theoretical basis, but is now
a useful reference tool for smaller nets. The DNAmacaute achieves its goal of masking the underlying
inter-process communication involved with an extertwdl and allows convenient and direct access to
powerful C++ based passage time analysis.

Aside from the new features already detailed, a largeunt of time was spent fixing various problems with
the original version. These ranged from analysis modareducing incorrect results, to more trivial problems
such as display issues. Many of the fixes were requoeatld more advanced functionality. Some changes
were made to ensure consistent cross platform bealravémd the product was tested extensively under
Windows, Linux & Mac OS JVMs.

Finally, work was also put into the presentatiorsdexts of PIPE. Button icons with an alpha channsilie
PIPE looks equally at home on different platformsve®al example nets were created, providing a useful
starting point for those new to Petri nets or wishimgvaluate the product. The multitude of indepenh@UIs
created for the various modules were replaced witidsia components to ensure consistency.

In summary, the great majority of features detaitethe initial specification have made it into tliveef version
of the product. PIPE has progressed from being the soatdimfited application of the first version to a
useable tool.

5.2. Further work

There were some planned features that were not imptecheue to lack of time. Other features were discussed
but not timetabled for inclusion due to the limitéthdéscale. These are summarised below with a short
description of the planning that was done for them.

5.2.1. Hierarchical nets

Hierarchical nets are a useful way of building complets by representing common sections by a “black box”
with inputs and outputs, which can be expanded to dhewcontained sub-net. This was anticipated to be
handled by defining an additional Petri net objgpie, which would be an interface object. Suchrdarface
would be a source or destination for arcs in a subpreviding the location for inputs and outputs wiitie
enclosing net. An additional object would then tsedito represent a sub-net, providing input and output
locations corresponding to the interfaces in therstbThe sub-net could be edited by double-clickinghis
representative object, which would open the submatriew tab.

PIPE would not require substantial changes to suphpisitas demonstrated by the number of new net objects
added and the improved ability to deal with muétipibs. The demand for it is questionable, as thera s& be

few significantly large common net sections, and itredbpbly easier to draw nets without hiding sectioneesin
this may lead to errors. There are also issues regandinguch nets would be animated.

29

5.2.2. Copy and paste

The ability to cut, copy and paste individual nkdngents, or entire sections of the net, was suggested as
useful feature. It was decided that, due to thaliigpecific nature of the data, it would not beeassary to use
the global system clipboard, but instead a local meicdm could be used. The anticipated implementatias

to extend all net objects with serialisation funcgipallowing them to save and load themselves concieely
and from a memory stream, including dealing with lingsaeen objects. This memory stream could then hold
an arbitrary number of objects, which could be rdegtan other nets or elsewhere within the same net.
However, this serialisation functionality would haeebe complete, with implementation in all net otgefor

it to be useful. Due to the length of time for whiebme net objects, particularly arcs, had non-fing@rival
representations, it was not possible to implement tlifsemough time to be sure of completion.

5.2.3. Undo and redo

The serialisation of objects would also simplify thdigbto undo and redo their creation and modificat as

a traversable history of changes could be maintainéd twe addition of some container objects for some
group actions such as paste and group deletion. As gueslas an extension of copy and paste and to be
implemented after it.

5.2.4. Contextual icon bar controls

It was hoped to implement some contextual buttons whighld appear next to the selected object, giving
controls for modifying its properties; in particulérywas thought that a place could have buttonsdtting and
removing tokens, removing the need for those two “ebddethe GUI. While such functionality is available
contextually through the popup menu, there wastimo¢ to develop a suitable control for this; it is not
anticipated that this would be complicated, but siitovould essentially be an extra way of doing soingth
already available, it was not a high priority.

5.2.5. Adding points to arcs

It is not currently possible to add extra pointsatoexisting arc that has been connected betweeaca phd
transition. The difficulty is in determining the ptish at which to place the added point; it wouléatly be
possible to add an extra point at an arbitrary locatin the arc, without modifying its shape. For gtiaiine
segments this is straightforward; for arcs it requiremgicated solving of cubic equations in order to
determine the required control points, which wathlen be different from the values they would haveevike
arc created sequentially. In addition to the latmpietion of curved arcs, this made it unfeasible to émnt.

5.2.6. Contextual cursors

Because there is still a level of modality in the ieditinterface, it would be helpful to emphasise therent
mode to the user. It was suggested that this wouldebedzhieved by modifying the mouse cursor to indicat
the mode; perhaps showing a small place by the arrow whglace mode, for example. However, while Java
supports easy creation of icons through its Iconimeges (albeit with varying degrees of success across
platforms), there is no corresponding class for csrsthis is probably due to the limitations commonly seen
cursor support on various platforms; for example, WiglXP only supports cursors that are 32 pixels square.
Custom cursors are therefore handled on a platforpldtyjerm basis, which is not in keeping with PIPE’s
cross-platform nature. Common system cursors such assheipand I-beam are supported cross-platform so
they are all PIPE uses.

5.2.7. Passing through extra XML fields

The PNML file format is XML-based, making it highlxtensible as programs are free to add any fields they
wish to their output files. However, some of them faihto load the file if these custom fields are remdyvit
would be preferable if PIPE could maintain theseaexiata loaded from a PNML file and save them back
unchanged; this would make it more likely that thdginating program could load the file. However,
maintaining this data is not simple, especially if itateots are dependent on other net data. It woulgineeq
data structure associated with every net object, dispwssibly unassociated blocks, maintaining the tke
additional data.

30

5.2.8. Mac OS X properties file

Some research was done on making PIPE behave irreamative way under Mac OS X, as Java specifies
certain limitations on its behaviour. It was determitteat it is possible to override this to provide feasusuch

as moving the menu bar from the window to the screpnthrough an additional properties file storechglo
with the executable files; however, this is not neagska it to be functional and was therefore notighh
priority.

5.2.9. Response time analysis

It was thought that it may be possible to write ddiional response time analysis module for GSPNsalnit
research was done into the algorithms required; heweaompletion and testing of the GSPN module was
required before adding this and the available tioreaflditions was reduced from initial expectations as th
problems with the original PIPE became clear. It ala® thought that Java would not be an efficientfquian

for calculating this, and may be better suited tanoiged tools.

5.2.10. Selection glow

Selected objects are currently drawn using hard-codkxlirs because it is difficult to make use of theesys
colour scheme when it is applied to monochrome Netctdjdt is quite possible for the system’s selection
colour to be white with a black background, or klagth a coloured background; in this case, it isiclift to
distinguish between a monochrome unselected and real@elected object without analysis of colours. One
possibility would be to instead represent selectidth & “glow” or surrounding border, which would noé¢
present on unselected objects and therefore ealigtilaguish. This could be implemented using Java S$toke

5.2.11. Handling of occlusion of labels

Place and transition labels, as well as arc weighéhgls, can become occluded, especially on more cample
nets. It may be preferable to allow the user to minteposition them; a better solution would be &goathm
capable of determining an optimal position for teel on a locus based on the associated object.nTigist

be a tricky problem to solve.

31

6. APPENDICES

6.1. References

Aalst, Best, E.:Application and Theory of Petri Nets 20034" International Conference, ICATPN 2003
Eindhoven, Netherlands (2003)

Bause F.; Kritzinger P. SStochastic Petri Nets — An Introduction to the Theanypublished manuscript
(1995)

Dingle N. J.; Harrison P. G.; Knottenbelt, W. Response Time Densities in Generalised Stochastic Retri
Models Proc. 3rd ACM Workshop on Software and Perforneaf#OSP 2002), Rome, Italy, pp. 46-54
(2002)

Dingle N.:Production of the Extensible Petri net Editor/Animatdedusa’ — MSc project, Imperial College
London (2001)

Hall, M.; Brown, L.: Core Web Programming, 2nd Editieh Sun Microsystems Press/Prentice Hall PTR
(2001)

Hunter, D.:Beginning XML~ Wrox Press (2001)
International Data GrougavaWorld- http://www.javaworld.com

Bloom J.; Clark C.; Clifford C.; Duncan A.; Khan HRapantoniou M.: PIPE homepage_—_http://petri-
net.sourceforge.net

Kazmierczak, M.: mkaz.com Linear Algebra sectidnttp://mkaz.com/math/line_alg.html

Knottenbelt, W. J.Generalised Markovian Analysis of Timed Transitionse®yst MSc thesis, University of
Cape Town, South Africa (1996)

Oh, H.R.; Chung, W.H.; Kim, M.Transformation of Timed Petri Nets for Response Tistam&tionin IEEE
Proceedings (Computers and Digital Techniques), \8¥, No. 1, pages 74-80 (1990)

Petri, C. A.:Kommunikation mit AutomatenPhD thesis, Universitat Bonn (1962)

Sun Microsystems In¢lava APl Documentation http://java.sun.com/j2se/1.4.2/docs/api
Sun Microsystems In¢tava Tutorial- http://java.sun.com/docs/books/tutorial

Unknown authorsPetri Nets World- http://www.daimi.au.dk/PetriNets

Weisstein, E. W.: MathWorld — http://mathworld.wolframm

32

6.2. Group Work

The project tasks were divided among the group mesnlzad assigned timeslots for their completion, as

shown below.

Task Assigned Week number
tor~ 1 2 3 4 5 6 7 8 9 10
Background reading 123456
Preliminary code examination 123456
Code cleanup 12345
JavaDoc 12345
Editing tools 125
Report-I preparation 123456 Bl
GuUI 24
Documentation 6
GSPN implementation 3
Report-1l preparation 345 N
DNAmaca 5
Optimisation 1245
Bug fixing 245
Final Report preparation 123456 -

Grey cells indicate allocated timescales; dark grdis ¢edicate deadlines for reports. This timetable was
adhered to as far as possible, with some scope for wdyk tone outside the timetable as required. Dezgllin
were set for sub-tasks as required.

Credit for individual added features can be broatdllycated as follows:

Feature Main contributor*

Curved arcs 1

DNAmaca interfacing 5

Export and printing 4
3
2

GSPN analysis
Selection

Grid 5
Module GUI
Annotation notes 2

Almost all tasks were the result of co-operation betwgrenp members, and the result of detailed discussions
in meetings. Very few implementations were done atatson, requiring intercommunication between group
members. The difficulty of implementing some featw@s not proportional to their perceived difficultytbe
volume of code produced. Much of the work done wan clear-cut extensions to PIPE.

6.3. Meeting minutes

It was decided before the first formal meeting thatause there was no group member with a strong desire
perform secretarial duties, and the task is neitHécwdlt nor requiring much research, this responsipilitould

be shared by all members in a turn-based system. Thiggto be a useful way of dividing the chore of an
unwanted task; the only problem encountered wals miintaining a fast turnaround between meetings and
minute publication, as well as an inconsistency inuteé formatting.

6.3.1. Minutes 15/1/04

All members of the group present, minutes taken by3b40
Subjects discussed:

1. Tom Barnwell
2. Michael Camacho
3. Matthew Cook

* Group members: 4. Maxim Gready
5. Peter Kyme

6. Michail Tsouchlaris

33

e Possible IDE's to be used, it was noted that JBuitdavailable for use on departmental machines but not
for free download for home use, visa-versa for Eclifi3ecision reached for everyone to try out the
possible alternatives and take a final decision ah#éx¢ meeting.

e The need to take a closer look at last year's projeatder to see where it can be improved. PK suggested
that each member of the group take one sixth of tligtirex code, work out roughly what it does and
describe this to the group at the next meeting. g€ed to divide up the code between the group.

Next meeting scheduled for Monday 19/1/04.

6.3.2. Minutes 19/1/04

Attendees - all group members present
Minutes taken by Matthew Cook
Agenda

« Each group member to describe to the group theienstahding of the section of existing PIPE code
allocated to them for analysis over the weekend.

- AOB
Findings as follows:

Pete:
DatalLayer/*
These classes outline the various objects that makePa@pri net. The basic inheritance structure is:
PetriNetObject(Abstract) NameLabel
/A
/ | \
Arc ArrowLabel PlaceTransitionObject (A bstract)
A
/ | \
Transition Place Token
So we have an abstract PetriNetObject at the batse dfierarchy, defining base properties like colour,
moveable status. Then there's Arc & ArrowLabel. Arask Ito PlaceTransitionObjects, and
ArrowLabel objects are the actual arrow that is drawthe centre of the Arc indicating direction.
The token carrying objects (Places, Transitions anceiigkhave a base class PlaceTransitionObject
which is abstract.
All the instantiable classes all have a paintCompomeethod for drawing themselves (except the
tokens of course which are drawn by the places).
The Namelabel class describes labels of PetriNetOhjgetts.
Maxim:

classification.java
Classifies Petri nets into the six categories foundage@d22-3 of the Book.

Has a method for each type returning a bool i§ ithiat type (a net can be a combination of types, in
general later ones in the list are supersets of earlies). All can be determined from the forwards and
reverse incidence matrices, which it pulls from the ldatar object. It seems to be wrong in several
cases. Much possibility for cleanup.

comparison.java

Compatres nets, either file to file or current to {if® option to compare two open nets). Seems highly
pointless. Compares attributes of place, transitimh @&c objects - position, name, ID, tokens. Issues
with how it does that (dumbly), I'm inclined to sa pointless except for getting a diff after slightly
modifying a net. If we keep it, it needs cleaning.

Matthew:
Datalayer.java

A large class that contains all the details necessadesoribe and maintain Petri Net objects. Has
arrays to store each type of element present in éarretv, place, token etc.), and methods to support
adding, removing and getting these elements. Consteueither empty or take an existing PNML file

34

as arguments. Also contains functions to describe thavimir of the net when transitions are fired,
and details of incidence matrices.

Tom:
Simulation.java/Statespace.java

Documentation poor, lots of code commented out. Thppeared to be duplication of GUI functions
here.

Michael:
InvariantAnalysis.java/Matrixes.java

These perform analyses on the Petri net objects, butesetando lots of GUI work as well. Unsure if the
algorithms used are actually correct.

Other points discussed

* General consensus that a number of improvements canade with the PIPE GUI (e.g. transition
alignment, changes to arc behaviour, changing HTMiput to stylesheets rather than having each module
formatting its own output).

e Alibrary of example nets would be beneficial f@ngonstration purposes.

e Uncertainty about what direction to take with aostfier analytical modules.

e The group has to decided to use Eclipse as IDE fopthjsct.

Todo

» Speak to Will Knottenbelt re suggested directiongHterproject [Maxim].

e Speak to James Bloom re gaining access to the PIPEeSoige page [Maxim].
e Speak to CSG re installing Eclipse on the networkxikhg

e Continue familiarisation with Java and Petri netd.[all

6.3.3. Minutes 30/1/04

Agenda
Next steps following successful completion of REPORAGDB
Topics covered

1. Agreed to schedule regular meetings for Mondays aitthys at 12:00 in the SCR unless otherwise
arranged.

2. Initial allocation of work to be done:
e Maxim: checking and fixing of existing codebase; mree time analysis implementation in Java
e Tom: editor issues
e Matthew: addition of GSPNs
« Pete: editor, also DNAmaca implementation (dependentifficulty, to be ascertained)
¢ Michael: invariant analysis
¢ Michail: mathematical specialisation
3. Work more appropriate to be done later:
e Documentation
e Hierarchical nets
e All other issues not covered
4. Immediate goals:
« Draw up specifications for preliminary additions andmifes as per above allocations

e Draw up lists of functions in existing modules whiate candidates for movement to a higher
utility class to avoid code repetition

¢ Get everyone added to the PIPE SourceForge account
e Get everyone set up in Eclipse, working with Javé set up for CVS access to PIPE@SF
5. Eclipse @ DOC

35

e Having emailed instructions in accessing the Linuxsiogr to the group, Maxim has asked CSG
about getting a Windows version on there. Help wésred with importing PIPE into Eclipse for
those having trouble.

6. Existing editor framework

¢ Given that the existing editor is encapsulated bylgeat, its functionality should be examined to
determine if it is suitable for extension for all oétHesired improvements or if it will ultimately
be better to rewrite substantial sections of it.

Notes taken by Maxim

6.3.4. Minutes 13/2/04

Agenda

* Progress with current work (all)

e Tasks for next week (all)

e Report 2 (Maxim)

« AOB

Since the last meeting, group members have workededfollbwing areas:
Maxim

* Created new GUI buttons.

e Added scrolling functionality to display window.

e Tidied up module display widgets.

e General code cleanup.

Pete

* Replaced existing arc class with multi-jointed arcs.
e Converted the guiview to a JLayeredPane to allowofisepth.
* General code cleanup

Tom

* Work on algorithms for curved lines.

Matthew

< Investigating problem with arc display.

¢ Ongoing development with GSPN analysis.
Michail

e Attempted analysis of state-space module.
Michael

» Selection of elements.

Tasks for next week are as follows:

e Maxim - start work on Report 2

e Pete - continue working on multi-segment arcs, addingye points to arcs, snapping arcs to place-
transitions.

e Tom - finish multi-point curve algorithms.

e Matthew - continue GSPN work.

¢ Michail - start working on Javadoc/user guide.
Report 2

This is due for submission next week. Maxim will prepamraft over the weekend and advise the group what
each member needs to provide by the next meeting.

6.3.5. Minutes 16/2/04

Agenda
36

Work done over the weekend
Report-II

Work for the week ahead
AOB

Topics covered

1.

Maxim:

Drafted Report-1l. Needs some sections to be expangexbpropriate people and any other comments;
this is to be done over the next few days in timeHerFriday deadline. This will be done through email

Work ahead: continuing to implement new GUIs for medurewriting the GUI tab interface to support
arbitrary numbers of tags - using Java Collections rahizar static arrays; finishing Report-II.

Michael:
Implemented Delete actions without a discrete mode.

Work ahead: Selection mode has some issues to beedsModule manager needs an overhaul to behave
in a less silly way.

Matthew:

Implemented and tested GSPN probability matrix

Work ahead: sojourn times for GSPNs, possibly comge®E8PN functionality by the end of the week.
Pete:

Segmented arcs 90% implemented, just a few issuesnmiemaArc points now show when selected and
can be moved. Added Tom's curved arcs to the GUI.

Will now switch to work on DNAmaca interfacing.
Tom (absent):

Arcs

Michail:

No work over weekend.

Continuing to work on documentation.

Other issues to be resolved

PNML compatibility

The program does not support copying any unknowa filgltls from loaded PNML files. This data should
be passed through untouched as it breaks compatilitityother Net apps.

Labels

An annotation label object should be implemented. Blysgsing a JEditorPane for formatted text. PNML
supports arbitrary (unlinked) labels.

Timed transitions
These need GUI side code to be improved; and neeel doawn differently to untimed transitions.
Copy/paste/undo/redo

Some discussion on how to implement this. The plaorisét objects to have some common methods to
save and load their representations from an in-memomyafip which will then be stored in a linked list for
undo/redo and also for clipboard operations. Undia/neill also need some representation of actions too.
The necessity for external clipboard functionality €opying/pasting Net objects is dubious so it may not
be worth the effort. Discussion of some kind of mutipbject/action container object for encapsulating
many actions, eg. paste may include many object craation

Response time analysis, DNAmaca

RTA will probably be done by DNAmaca, reducing tieed for an internal Java version. Pete is working
on DNAmaca now.

Printing/save to PNG

"Simply" a matter of rendering the net to a differeahvas, probably not too hard. Task will be assigned
when someone suitable is free.

Add/remove token local toolbar
37

If, when a place was selected, buttons appeareaiditing/removing tokens, it would remove the need for
those modal operations, which all agree is A Good Thsgorevious item.

e Use of SourceForge tracker facilities

Sourceforge offers a bug/feature tracker allowirgksato be described and assigned to group members.
This is a good way of making sure nothing is missed an# isaot duplicated, so all agreed to use this, to
check it regularly and to assign tasks to themselwdthers suitably.

6.3.6. Minutes 20/2/04

Agenda

e Work done over the weekend
* Report-ll

e Work for the week ahead

e AOB

Topics covered

1. Maxim;

« Finished: Report Il write-up; various fixes; new Goii Statespace module.

¢« Work ahead: Toggleable toolbar buttons and corretipgrradio buttons for menu; de-sillify the
first tab once and for all.

2. Michael:

* Finished: Various bugfixes; CreateGui uses static msthod variables so references to it are no
longer required.

« Work ahead: Various bugfixes, plus context buttons-fetokens.

3. Matthew:

¢ Ongoing work on GSPN module - almost finished.
4. Peter:

¢ Ongoing work on DNAmaca interfacing. Going well.
5. Tom:

e Arc stuff; Move transition rotation to right-click me; printing functionality (additionally export
to postscript/png).

6. Michail:
¢ Continuing to work on documentation.
7. Other issues to be resolved
« Timed transitions should be unfilled.
* New right-click delete option.
« Arc weights need to be displayed alongside arcs.
¢ It should be possible for the user to add annotatibal$ to a Petri net.

6.3.7. Minutes 23/2/04

Progress

Maxim

e Added toggling toolbar buttons.

e Removed limit on number of tabs and disposed ofini&b.
¢ Modified ‘about’ dialogue box.

« Investigated different file browser with a view toproving appearance for Mac users. Alternative class
looked ugly in Windows so will probably not be used.

e General code cleanup.
Michail
38

e Investigating user documentation.

Pete

¢ No PIPE work since Friday.

Michael

« No PIPE work since Friday.

Matthew

e Added Labels array to datalLayer (to support net-lal@lling). Some problems with DOM to be resolved.

» Debugging of existing PNML code (not possible priothis weekend due to saving/loading/editing bugs).
Fixed incidence matrix bug.

6.3.8. Minutes 27/2/04

Present: Pete, Tom, Max, Michael, Matthew

Taken by Pete

Tom: Has been ill this week and hasn't done any gosugoursework.
Max: Has been working on gui stuff, working througk various modules.

Pete: Suggested that it may be more efficient fox ado the basic dnamaca module gui since he hees tthe
other ones.

Max: Bug in datalayer on loading, looking for xd&§ in current directory.

Matthew: Has been working on xsl files, doesn’t knolmt can’t find them though.
Matthew: will look at fixing.

Matthew: has been working on xsl sheets. Added lalpgdatiin datalayer and xsl sheets.
Max: Comparison module seems fairly useless, but is now.fixe

Matthew: Now has working results for the exponentiallgighted firing time. Will need to include extetna
source for this in tree.

Michael: Not done a lot, going to be working on areighting label. Would like to have the weightiladpel
draggable along the arc.

Max: Would like the double click to rotate transitichanged, possible to right click menu.

Pete: Has been working on dnamaca. Had a meetingNigthDingle to discuss problems running dnamaca.
Turns out it only runs under Linux. Am now working nmning dnamaca as an external process and parsing
it's stdout.

Max: Going to be working on printing/exporting
Matthew: Will want some info on arcpaths for saving.

Max: Everyone needs to try and have at least thpiptmrity bug fixed by the end of the weekend ferably
more.

6.3.9. Minutes 1/3/04

Work done over the weekend:

Pete:

¢ Much arduous hacking of DNAmaca

« Dealing with thread issues in Swing in order to thigna progress box
* Working on spacing arc transition entry points, pngvannoying

* Noted that curved arc entry is still not available

Matthew:

* Modified XSL so that transition orientation is stored

e Completed steady state distribution calculationudirig transition throughput
Michail:

e Looked into the complexities of HTML in preparatiar fvriting in it

39

Tom:

* Worked on displaying weight on arcs

e Improved rotation of transitions

* Worked on the ability to hold shift and have the gieview update accordingly
Michael:

« Arc points are now selectable and draggable

e Setting of weighting now works

* Fixed loading of weighting from file

e Added proximity detection for snapping

Maxim:

¢ Added PNG export

e Added PostScript export

¢ Added printing support

e Added example files menu

e More menus for features in general

Work to be done during the week:

Pete:

e Continuing arc transition entry points

e Making DNAmaca work with our nets

» Displaying results from DNAmaca

« Making the grid work better with existing unalignejects
Matthew:

e Tidying of GSPN code

* Add GUI to GSPN module

e Add arc points saving into XSL

Michail:

« Documentation, especially Invariant Analysis
Michael:

e Popup menu to delete an arc point and toggle iteemod
e Adding points to arcs

e Selection glow

* Annotations

e All other issues already on bug tracker

Tom:

* Finish showing weighting on arcs

e Adding keyboard event handler for shift -> arc cupveview

* Arc end point angle calculation for improved arrogad orientation and place entry location

e Supplying data for arc point saving

¢ Make Delete key delete the last point drawn beforésacompleted

Maxim:

* Fix double toggle of object toolbar buttons leavirggbutton apparently selected
« Delete in-progress arc when object mode is changed

e Other issues on bug tracker

e Work on final report

40

6.3.10. Minutes 5/3/04

Agenda

Discussion of work completed since the last meeting,work to be done during the weekend
Topics covered

Work covered during the week:

Maxim:

« fixed bugs with arc mode, mode buttons, animationertw@aking other modes (due to a conflict between
mode and object type)

e restored right click menu to module manager, removeg,be
< changed selection colours for places & timed transitions

e saw wjk, demonstrated project, wjk suggested separdtenkufor timed & immediate transitions, this
implemented

Pete:
« finished code for positioning arcs arc ends on the edglaces & transitions

e continued with DNaMaca (?), now produces correcpaiufor nets generated with PIPE, added some
safety checks so that incorrect arcs are not analysed

e now looks for DnAmMACa on linux path

Michael

e arcs now snap to nearest place/transtion when drawing

« fixed assigned bugs

» preliminary work on annotation labels

« right click menu now allows user to toggle point type

Michail

e continuing writeup of HTML documentation and help$

Matthew:

e added display for GSPN analysis module, now dispklyies of reachability sets etc
e proceeding with code to save arc path point detaiist@nsition angles into PNML
Tom:

e substantial rewrite & cleanup of code for creatingzed arcs

« fixed code to correctly angle arcs at places andti@ms

e added preliminary code for displaying arc weightingiemnot equal to one
« shift key now toggles the end point of any arc beirayvn

To do:

Maxim:

e Start writing report, ensure other members of thegdo too

Pete:

e Add code to display graphs of DnAMAcA module output

e start writeup

Michael

e annotation functions

e start writeup

Michail

e complete writeup of HTML documentation and helpsil

Matthew:

« finish functions for saving and loading arc path poemd transtion angles

e add a sizeable example file
41

e start writeup

Tom

« finish positioning of arc weight labels

« finish code to fix curved arc segments at right asgetransitions
o start writeup

Notes taken by Tom

6.3.11. Minutes 8/3/04

Maxim:

» Fixed png export bug.

e Fixed invariant analysis module gui.

e Fixed simulation module maths bug.

e added shading to the table widget.

e added help window & toolbar/menu icon.

« scaled printing down to fit net on page.

Matthew:

e Added Saving arcpaths is there, loading not there yet

* Waiting on Tom to add function to receive array oinps.

e Added Saving/loading of annotations.

e Created courier example net.

Michael:

e Added support for annotations

e General bug fixing

Maxim: Printing bug of annotations, could we chafrgen courier for font.
Pete: Possible auto resize when typing.

Maxim: Snap to grid a bit illogical? Maybe snapdp teft?

Tom: Been working on coursework this weekend, no pip&k done.
Maxim: Asked everyone to do write up, specificaltywlrite up for areas they “own” by Friday.
Discussion regarding mouseover highlighting of end/asrarioints.

Pete:

e Added graphing of results to dnamaca module, fixetbua dnamaca bugs.
e Completed work on arc end point positioning.

6.3.12. Minutes 12/3/04

Maxim:
« Drafted a substantial part of the report, individsedtions required saturday am.
e Updated Sourceforge website.

» Fixed several bugs: changing grid size changes aiotsize, saved grids now load with weighting, arcs
‘wobbling' whilst being drawn, positions of componéntsaved grids now load correctly, null-pointers on
arc deletion ironed out.

Matthew:

e Written up some sections of report.

e Added some html navigation to GSPN module front end.
< Fixed exception to catch oversized nets in analysisubeod
* Fixed aspects of loading arc paths from saved nets

42

Michael:

» Fixed several annotation bugs

¢ Fixed aspects of loading arc paths from saved nets

Michail:

e Continued update of html help and user documentation

Tom:

e Fixed arcs so that curved end segments meet transitiagsteangles
* Modified positioning of weight labels so they remalioser to curved arcs
Pete:

e Written up some of the report on DNAmaca

e Misc improvements to DNAmaca

43

